Abstract
A subset of the Cantor space ω2 is called monotone iff it is closed upward under the partial ordering ≤ defined by xy iff x(n)y(n) for all nω. A set is -positive (-positive) iff it is monotone and -positive set is a countable union of -positive sets; a -positive set is a countable intersection of -positive sets. (See Cenzer [2] for background information on these concepts.) It is clear that any -positive set is and monotone; the converse holds for n ≤ 2 [2] and was conjectured by Dyck to hold for greater n. In this note, we will disprove this conjecture by giving examples of monotone sets (for n ≥ 3) which are not even -positive.First we note a few isomorphisms. The space (ω2, ≤) is isomorphic to the space (ω2 ≥), so instead of monotone and positive sets we may construct hereditary and negative sets (the analogous notions with “closed upward” replaced by “closed downward”). Also, (ω2, ≤) is isomorphic to ((ω), ⊆), where denotes the power set operator, or to ((S), ⊆) for any countably infinite set S.In order to remove extraneous notation from the proofs, we state the results in an abstract form (whose generality is deceptive).

This publication has 0 references indexed in Scilit: