Dielectric properties of rutile and its use in high temperature superconducting resonators

Abstract
The microwave properties of single crystalline TiO2 (rutile) were investigated. At a frequency of 7.5 GHz the loss tangent tan δ was found to increase from 1.4×10−7 at 4 K to 4×10−6 at 70 K for electric fields parallel to the crystallographic a,b plane. The high permittivity of 105 and the small tanδ in combination with the low microwave losses of high temperature superconductors (HTS) were utilized to construct a miniaturized X‐band resonator with a high quality factor Q. An assembly of two YBa2Cu3O7 films of 8 mm in diameter separated by a rutile cylinder of 2 mm height provides a TE011 resonance at 9.7 GHz with Qs ranging from 6×105 at 10 K to 105 at 70 K. Frequency scaling of the losses in rutile and in the HTS films indicates Qs in excess of 106 at 1.8 GHz using YBa2Cu3O7 films of two inches in diameter. Such resonators are considered to be key elements for high‐power filters in mobile communications.