Proteasome inhibition by paired helical filament‐tau in brains of patients with Alzheimer's disease
Top Cited Papers
- 28 February 2003
- journal article
- research article
- Published by Wiley in Journal of Neurochemistry
- Vol. 85 (1) , 115-122
- https://doi.org/10.1046/j.1471-4159.2003.01642.x
Abstract
Alzheimer's disease (AD) is characterized neuropathologically by intracellular neurofibrillary tangles (NFTs) formed of tau‐based paired helical filaments (PHFs) and extracellular β‐amyloid plaques. The degree of Alzheimer dementia correlates with the severity of PHFs and NFTs. As an intraneuronal accumulation of oxidatively damaged proteins has been found in the brains of patients with AD, a dysfunction of the proteasomal system, which degrades damaged proteins, has been assumed to cause protein aggregation and therefore neurodegeneration in AD. In this study, we revealed that such proteasome dysfunction in AD brain results from the inhibitory binding of PHF‐tau to proteasomes. We analysed the proteasome activity in brains from patients with AD and age‐matched controls, and observed a significant decrease to 56% of the control level in the straight gyrus of patients with AD. This loss of activity was not associated with a decrease in the proteasome protein. PHF‐tau co‐precipitated during proteasome immunoprecipitation and proteasome subunits could be co‐isolated during isolation of PHFs from AD brain. Furthermore, the proteasome activity in human brains strongly correlated with the amount of co‐precipitated PHF‐tau during immunoprecipitation of proteasome. Incubation of isolated proteasomes with PHF‐tau isolated from AD brain, and with PHFs after in vitro assembly from human recombinant tau protein, resulted in a distinct inhibition of proteasome activity by PHF‐tau. As this inhibition of proteasome activity was sufficient to induce neuronal degeneration and death, we suggest that PHF‐tau is able directly to induce neuronal damage in the AD brain.Keywords
This publication has 34 references indexed in Scilit:
- Impairment of the Ubiquitin-Proteasome System by Protein AggregationScience, 2001
- Hydrogen Peroxide-induced Structural Alterations of RNase AJournal of Biological Chemistry, 2001
- Protein oxidation and degradation during cellular senescence of human BJ fibroblasts: part II—aging of nondividing cellsThe FASEB Journal, 2000
- Defective ubiquitination of cerebral proteins in Alzheimer's diseaseJournal of Neuroscience Research, 2000
- Ubiquitin-mediated proteolysis: biological regulation via destructionBioEssays, 2000
- Molecular pathogenesis of movement disorders: are protein aggregates a common link in neuronal degeneration?Current Opinion in Neurology, 1999
- Oxidative damage in Alzheimer'sNature, 1996
- Biopsy-derived adult human brain tau is phosphorylated at many of the same sites as Alzheimer's disease paired helical filament tauNeuron, 1994
- The molecular pathology of Alzheimer's diseaseNeuron, 1991
- Tau protein function in living cells.The Journal of cell biology, 1986