Abstract
The instability of Poiseuille flow in a pipe is considered for small disturbances. An asymptotic analysis is used which is similar to that found successful in plane Poiseuille flow. The disturbance is taken to travel in a spiral fashion, and comparison of the radial velocity component with the transverse component in the plane case shows a high degree of similarity, particularly near the critical point where the disturbance and primary flow travel with the same speed. Instability is found for azimuthal wave-numbers of 2 or greater, although the corresponding minimum Reynolds numbers are too small to compare favourably with either experiments or the initial restrictions on the magnitude of the wave-number.

This publication has 11 references indexed in Scilit: