Microplane Model for Concrete. I: Stress-Strain Boundaries and Finite Strain

Abstract
The paper presents an improvement of the microplane model for concrete—a constitutive model in which the nonlinear triaxial behavior is characterized by relations between the stress and strain components on a microplane of any orientation under the constraint that the strains on the microplane are the projections of the macroscopic strain tensor. The improvement is achieved by a new concept: the stress-strain boundaries, which can never be exceeded. The advantage of this new concept is that various boundaries and the elastic behavior can be defined as a function of different variables (strain components). Thus, whereas for compression the stress-strain boundaries are defined on the microplanes separately for volumetric and deviatoric components, for tension an additional boundary is defined in terms of the total normal strains. This is necessary to achieve a realistic triaxial response at large tensile strains. For microplane shear, a friction law with cohesion is introduced. The present model is simpler ...