Chaos and Mixing in Triaxial Stellar Systems

  • 15 February 1996
Abstract
We investigate the timescales for stochasticity and chaotic mixing in a family of triaxial potentials that mimic the distribution of light in elliptical galaxies. Some of the models include central point masses designed to represent nuclear black holes. Most of the boxlike orbits are found to be stochastic, with mean Liapunov times that are 3-6 times the period of the long-axis orbit. A small core radius or significant black hole mass causes most of the stochastic orbits to behave ergodically over the same timescale, visiting the entire volume beneath the equipotential surface. We estimate timescales for chaotic mixing in the more strongly stochastic models by evolving ensembles of 10^4 points until their distribution reaches a nearly steady state. Mixing initially takes place rapidly, with characteristic times of 10-30 dynamical times, as the phase points fill a region similar in shape to that of a box orbit. Subsequent mixing is slower, with characteristic times of hundreds of orbital times. Mixing rates were found to be enhanced by the addition of modest force perturbations. The consequences for the structure and evolution of elliptical galaxies are discussed.

This publication has 0 references indexed in Scilit: