Abstract
We show that waves propagating in a transition disk can explain the short term temporal behavior of Cygnus X-1. In the transition disk model the spectrum is produced by saturated Comptonization within the inner region of the accretion disk where the temperature varies rapidly with radius. Recently, the spectrum from such a disk has been shown to fit the average broad band spectrum of this source better than that predicted by the soft-photon Comptonization model. Here, we consider a simple model where waves are propagating cylindrically symmetrical ly in the transition disk with a uniform propagation speed ($c_p$). We show that this model can qualitatively explain (a) the variation of the power spectral density (PSD) with energy, (b) the hard lags as a function of frequency and (c) the hard lags as a function of energy for various frequencies. Thus the transition disk model can explain the average spectrum and the short term temporal behavior of Cygnus X-1.

This publication has 0 references indexed in Scilit: