THE INFLUENCE OF MHC AND NON-MHC GENES ON THE NATURE OF MURINE CARDIAC ALLOGRAFT REJECTION
- 1 August 1990
- journal article
- research article
- Published by Wolters Kluwer Health in Transplantation
- Vol. 50 (2) , 313-324
- https://doi.org/10.1097/00007890-199008000-00028
Abstract
While normal cardiac tissue expresses low levels of MHC-class I, undetectable levels of MHC-class II antigens, and no mononuclear cell infiltrates, posttransplantation allogenic donor cardiac tissue demonstrates dramatic increases of MHC-class I/class II expression coincident with the infiltration of the tissue with mononuclear cells. Results of this study demonstrate that the kinetics of MHC-class I/II antigen expression and the phenotype of mononuclear cell infiltrate are influenced, to a great degree, by the genetic H-2, intra-H-2 and non-H-2 incompatibility between donor and recipient strains of mice. Increases of MHC-class I precede class II expression in cells from donor cardiac tissue from completely allogeneic BALB/c, H-2-disparate B10.D2, B10.BR, and K, I-A and I-E-disparate B10.T (6R) strains of mice implanted in B10 recipients. In contrast, increase in the level of MHC-class II precedes MHC-class I increases in donor cardiac tissue from H-2-identical but non-H-2-incompatible A.By and the I-E + H-2D end-different B10.A(5R) donor tissue. The completely allogeneic, H-2-disparate or K, I-A, I-E-disparate donor cardiac tissue induced the infiltration of predominantly CD8+ T cells, whereas the non H-2 and I-E + H-2D end-different donor cardiac tissue induced the infiltration of predominantly CD4+ T cells. Finally, whereas bm1 donor cardiac tissue is rejected by B6 recipients by day 32, the (bm1 .times. bm12)F1 allografts are rejected by day 20, and both express MHC-class I antigens followed by MHC-class II antigens, and contain predominantly CD8+ T cells. In contrast, bm12 allografts are not rejected by B6 recipients, express chronic low levels of both MHC-class I and II antigens, and contain predominantly CD4+ T cells. Of interest is our preliminary finding that bm12 allografts placed in one ear of B6 recipients appear to modify the kinetics of MHC expression and the predominant pheno-type of mononuclear cell infiltrates in bm1 allografts placed in the opposite ear. Cumulatively, these data suggest that the type of genetic disparity between cardiac donor and recipient greatly influences the quantitative and qualitative host responses.This publication has 2 references indexed in Scilit: