Torus-Fibered Calabi-Yau Threefolds with Non-Trivial Fundamental Group
Preprint
- 27 February 2003
Abstract
We construct smooth Calabi-Yau threefolds Z, torus-fibered over a dP_9 base, with fundamental group Z_2 X Z_2. To do this, the structure of rational elliptic surfaces is studied and it is shown that a restricted subset of such surfaces admit at least a Z_2 X Z_2 group of automorphisms. One then constructs Calabi-Yau threefolds X as the fiber product of two such dP_9 surfaces, demonstrating that the involutions on the surfaces lift to a freely acting Z_2 X Z_2 group of automorphisms on X. The threefolds Z are then obtained as the quotient Z=X/(Z_2 X Z_2). These Calabi-Yau spaces Z admit stable, holomorphic SU(4) vector bundles which, in conjunction with Z_2 X Z_2 Wilson lines, lead to standard-like models of particle physics with naturally suppressed nucleon decay.Keywords
All Related Versions
This publication has 0 references indexed in Scilit: