Comparison theorems for some quasilinear degenerate elliptic operators and applications to symmetry and monotonicity results
- 1 August 1998
- journal article
- Published by European Mathematical Society - EMS - Publishing House GmbH in Annales de l'Institut Henri Poincaré C, Analyse non linéaire
- Vol. 15 (4) , 493-516
- https://doi.org/10.1016/s0294-1449(98)80032-2
Abstract
We prove some weak and strong comparison theorems for solutions of differential inequalities involving a class of elliptic operators that includes the p -laplacian operator. We then use these theorems together with the method of moving planes and the sliding method to get symmetry and monotonicity properties of solutions to quasilinear elliptic equations in bounded domains. Résumé: Nous prouvons quelques théorèmes de comparaison faible et fort pour solutions de certaines inéqualités différentielles liées à une classe d’opérateurs elliptiques qui comprend le p -laplacien. Ces théorèmes sont utilisés avec la méthode de « déplacement d’hyperplanes å et la méthode de « translation å pour obtenir des propriétés de symétrie et de monotonie des solutions d’équations elliptiques quasilinéaires dans des domaines bornés.This publication has 10 references indexed in Scilit:
- Regularity for a more general class of quasilinear elliptic equationsPublished by Elsevier ,2004
- C1 + α local regularity of weak solutions of degenerate elliptic equationsPublished by Elsevier ,2002
- Symmetry of positive solutions of a quasilinear elliptic equation via isoperimetric inequalitiesApplicable Analysis, 1994
- A note on radiality of solutions of P-laplacianApplicable Analysis, 1994
- On the method of moving planes and the sliding methodBulletin of the Brazilian Mathematical Society, New Series, 1991
- Quasilinear elliptic equations involving critical Sobolev exponentsNonlinear Analysis, 1989
- A Strong Maximum Principle for some quasilinear elliptic equationsApplied Mathematics & Optimization, 1984
- On The Dirichletproblem for Quasilinear EquationsCommunications in Partial Differential Equations, 1983
- Symmetry and related properties via the maximum principleCommunications in Mathematical Physics, 1979
- On harnack type inequalities and their application to quasilinear elliptic equationsCommunications on Pure and Applied Mathematics, 1967