Spontaneous Air-Driven Separation in Vertically Vibrated Fine Granular Mixtures

Abstract
We report the observation of the spontaneous separation of vertically vibrated mixtures of fine bronze and glass spheres of similar diameters. At low frequencies and at sufficient vibrational amplitudes, a sharp boundary forms between a lower region of glass and an upper region of the heavier bronze. The boundary undergoes various oscillations, including periodic tilting motion, but remains extremely sharp. At higher frequencies, the bronze separates as a mid-height layer between upper and lower glass regions, and the oscillations are largely absent. The mechanism responsible for the separation can be traced to the effect of air on the granular motion.