Abstract
In a previous paper we proved that the diagonal elements of a totally nonnegative matrix are majorized by its eigenvalues. In this note we show that the majorization of a vector of nonnegative real numbers by another vector of nonnegative real numbers is not sufficient for the existence of a totally nonnegative matrix with diagonal elements taken from the entries of the majorized vector and eigenvalues taken from the entries of the majorizing vector.

This publication has 5 references indexed in Scilit: