Abstract
The performance of a bandwidth-efficient multiple-tone modulation scheme for M-ary frequency-shift keying (MFSK) is presented. The use of balanced incomplete block (BIB) designs is proposed to form the signaling frames. On each symbol interval the modulator selects a group of elements from a BIB design and divides its energy into the orthogonal waveforms corresponding to these elements. The multiple-tone FSK scheme based on these block designs is shown to increase greatly the bandwidth efficiency of a conventional M-ary FSK system. An implicit diversity is incorporated in the modulation scheme. Thus, a performance improvement comparable to that obtained by using time or frequency diversity is shown on a Rayleigh fading channel and also on an interference channel with partial-band Gaussian noise. The multiple-tone scheme based on this design is compared to a multiple-tone scheme based on Hadamard matrices suggested by J.F. Pieper et al. (1978). It is shown that similar performance is achieved on a fading channel, while an advantage close to 4 dB is obtained for the proposed scheme on an AWGN (additive white Gaussian noise) channel.<>

This publication has 5 references indexed in Scilit: