Optical characterization of low-energy electron-beam-colored LiF crystals by spectral transmittance measurements

Abstract
The complex refractive index of a LiF crystal surface layer irradiated by low-energy electrons is modified by the stable formation of color centers embedded in it. A simplified dipole-electromagnetic field interaction model has been adopted in order to estimate the dispersion curves of colored LiF from a single optical transmittance measurement. The excellent agreement with the corresponding experimental curves (obtained by means of spectrophotometry and ellipsometry) demonstrates this to be a promising approach for LiF-based optical waveguide characterization.