The Oxidation of Benzo[a]pyrene Mediated by Lipid Peroxidation in Irradiated Synthetic Diets

Abstract
The effect of .gamma.-irradiation (1000-4000 Gy) on the formation of lipid peroxides and on the oxidation of the environmental carcinogen benzo[a]pyrene (BP) has been studied in mixtures of starch/fat and BP which were used as models for natural foods. When mixtures containing polyunsaturated fats (mackerel oil in cod-liver oil which contain relatively large proportions of C20:5 and C22:6) were exposed to .gamma.-irradiation, large concentrations of lipid peroxide were formed and a concomitant oxidation of BP to mutagenic and toxic BP quinones took place. The rate of BP oxidation was closely related to the extent of peroxidation of the lipids in the starch mixtures and was dependent on the dose of .gamma.-irradiation and the presence of air. Mackerel oil also underwent peroxidation during the storage of both irradiated and unirradiated starch/mackerel oil/BP mixtures and this resulted in a significant oxidation of the BP present in these samples. Antioxidants such as vitamin E and BHA inhibited both lipid peroxidation and BP oxidation resulting from .gamma.-irradiation. These results demonstrate that the species generated during the peroxidation of unsaturated fats in foodstuffs can react with polycyclic aromatic hydrocarbons such as BP and convert them into active mutagenic and toxic products. This has important toxicological implications, particularly as the consumption of polyunsaturated fat in the Western world is increasing and .gamma.-irradiation may soon be widely used for food sterilization.