Abstract
The starting flow of a viscous fluid past a circular cylinder at Reynolds numbers 40 and 100 has been obtained by a numerical method. The method used is that developed by Payne (1957) but it has been extended here to cover a larger time interval.At Reynolds number 40 Payne's result for the drag coefficient at time t = 6 is in reasonable agreement with Kawaguti's (1953) result for the steady case but if Payne's computation, is extended to time t ≈ 24, the result is in better agreement with Apelt's (1961) result for the steady case. Also, a further investigation into the case R = 100 shows that Payne's mesh size is too crude. Similar observations can be made concerning the size of the standing vortices downstream of the circular cylinder and how they grow in time.

This publication has 4 references indexed in Scilit: