Modeling exchange rate dynamics: Non-linear dependence and thick tails

Abstract
This paper illustrates a new approach to the statistical modeling of non-linear dependence and leptokurtosis in exchange rate data. The student's t autoregressive model withdynamic heteroskedasticity (STAR) of spanos (1992) is shown to provide a parsimonious and statistically adequate representation of the probabilistic information in exchange rate data. For the STAR model, volatility predictions are formed via a sequentially updated weighting scheme which uses all the past history of the series. The estimated STAR models are shown to statistically dominate alternative ARCH-type formulations and suggest that volatility predictions are not necessarily as large or as variable as other models indicate.

This publication has 4 references indexed in Scilit: