Synthesis of gallium nitride quantum dots through reactive laser ablation

Abstract
Nanocrystalline GaN was synthesized through reactive laser ablation of gallium metal in a N2 atmosphere. X-ray diffraction, selected-area electron diffraction, and transmission electron microscopy measurements show that the GaN crystallites are as small as 2 nm in diameter, and follow a log-normal size distribution with a mean particle diameter of 12 nm. Size-selective photoluminescence and photoluminescence excitation spectroscopy reveal a continuous range of blueshifted band-edge emissions and absorptions starting from the bulk value for gallium nitride and continuing to below 300 nm. These results are consistent with a GaN particle size distribution that encompasses regions above and below the excitonic-Bohr radius of GaN, such that the GaN material shows combined bulk and quantum confined optical properties.