Principles and practice in verifying rule-based systems

Abstract
This paper surveys the verification of expert system knowledge bases by detecting anomalies. Such anomalies are highly indicative of errors in the knowledge base. The paper is in two parts. The first part describes four types of anomaly: redundancy, ambivalence, circularity, and deficiency. We consider rule bases which are based on first-order logic, and explain the anomalies in terms of the syntax and semantics of logic. The second part presents a review of five programs which have been built to detect various subsets of the anomalies. The four anomalies provide a framework for comparing the capabilities of the five tools, and we highlight the strengths and weaknesses of each approach. This paper therefore provides not only a set of underlying principles for performing knowledge base verification through anomaly detection, but also a survey of the state-of-the-art in building practical tools for carrying out such verification. The reader of this paper is expected to be familiar with first-order logic.

This publication has 12 references indexed in Scilit: