Case study of an InAs quantum dot memory: Optical storing and deletion of charge

Abstract
We have studied self-assembled InAs quantum dots embedded in an InP matrix using photocapacitance and photocurrent spectroscopy. These dots are potentially promising for memories due to the large confinement energy for holes. In this work we have realized simple quantum dot memory by placing the dots in the space–charge region of a Schottky junction. Our measurements reveal that a maximum of about one hole can be stored per dot. We also find that illumination for an extended period deletes the stored charge. We show that these limitations do not reflect the intrinsic properties of the dots, but rather the sample structure in combination with deep traps present in the sample.