Role of cryptic genes in microbial evolution.

Abstract
Cryptic genes are phenotypically silent DNA sequences, not normally expressed during the life cycle of an individual. They may, however, be activated in a few individuals of a large population by mutation, recombination, insertion elements, or other genetic mechanisms. A consideration of the microbial literature concerning biochemical evolution, physiology, and taxonomy provides the basis for a hypothesis of microbial adaptation and evolution by mutational activation of cryptic genes. Evidence is presented, and a mathematical model is derived, indicating that powerful and biologically important mechanisms exist to prevent the loss of cryptic genes. We propose that cryptic genes persist as a vital element of the genetic repertoire, ready for recall by mutational activation in future generations. Cryptic genes provide a versatile endogenous genetic reservoir that enhances the adaptive potential of a species by a mechanism that is independent of genetic exchange.

This publication has 0 references indexed in Scilit: