Modification of Motor Output to Compensate for Unanticipated Load Conditions During Rapid Voluntary Movements

Abstract
Mechanisms responsible for load compensation during fast voluntary movements were investigated in 20 normal subjects trained to carry out rapid wrist flexions against a standard load. When an unanticipated increase in load occurred, there was a compensatory increase in agonist EMG and decrease in antagonist EMG. Unanticipated decreases in load produced reciprocal changes with a decrease in agonist EMG and an increase in antagonist EMG. The latency of these EMG changes was quite short and compatible with a spinal reflex mechanism rather than a long loop response. The results suggest that mechanisms exist at the spinal level to allow rapid modification of motor programs when unanticipated load conditions are encountered on initiation of movement.