ΔpH-Dependent Amino Acid Transport into Plasma Membrane Vesicles Isolated from Sugar Beet Leaves
Open Access
- 1 September 1990
- journal article
- research article
- Published by Oxford University Press (OUP) in Plant Physiology
- Vol. 94 (1) , 268-277
- https://doi.org/10.1104/pp.94.1.268
Abstract
Amino acid transport into plasma membrane vesicles isolated from mature sugar beet (Beta vulgaris L. cv Great Western) leaves was investigated. The transport of alanine, leucine, glutamine, glutamate, isoleucine, and arginine was driven by a trans-membrane proton concentration difference. ΔpH-Dependent alanine, leucine, glutamine, and glutamate transport exhibited simple Michaelis-Menten kinetics, and double-reciprocal plots of the data were linear with apparent Km values of 272, 346, 258, and 1981 micromolar, respectively. These results are consistent with carrier mediated transport. ΔpH-Dependent isoleucine and arginine transport exhibited biphasic kinetics, suggesting these amino acids may be transported by at least two transport systems. Symport mediated alanine transport was electrogenic as demonstrated by the effect of membrane potential (ΔΨ) on ΔpH-dependent flux. In the absence of significant charge compensation, a low rate of alanine transport was observed. When ΔΨ was held at 0 millivolt with symmetric potassium concentrations and valinomycin, the rate of flux was stimulated fourfold. In the presence of a negative ΔΨ, alanine transport increased sixfold. These results are consistent with an electrogenic transport process which results in a net flux of positive charge into the vesicles. The effect of changing ΔΨ on the kinetics of alanine transport altered Vmax with no apparent change in Km. Amino acid transport was inhibited by the protein modifier diethyl pyrocarbonate, but was insensitive to N-ethylmaleimide, 4,4′-diisothiocyano-2,2′-stilbene disulfonic acid, p-chloromercuribenzenesulfonic acid, phenylglyoxal, and N,N′-dicyclohexylcarbodiimide. Four amino acid symport systems, two neutral, one acidic, and one basic, were resolved based on inter-amino acid competition experiments. One neutral system appears to be active for all neutral amino acids while the second exhibited a low affinity for isoleucine, threonine, valine, and proline. Although each symport was relatively specific for a given group of amino acids, each system exhibited some crossover specificity for amino acids in other groups.Keywords
This publication has 21 references indexed in Scilit:
- Electrogenicity, pH-Dependence, and Stoichiometry of the Proton-Sucrose SymportPlant Physiology, 1990
- Proton-Coupled Sucrose Transport in Plasmalemma Vesicles Isolated from Sugar Beet (Beta vulgaris L. cv Great Western) LeavesPlant Physiology, 1989
- l-Glutamate-Dependent Medium Alkalinization by Asparagus Mesophyll CellsPlant Physiology, 1988
- Amino Acid Transport into Membrane Vesicles Isolated from ZucchiniPlant Physiology, 1988
- Amino Acid Transport in Protoplasts Isolated from Soybean LeavesPlant Physiology, 1986
- Selection and Characterization of Chlorella Mutants Deficient in Amino Acid TransportPlant Physiology, 1985
- Mechanism of Amino Acid Uptake by Sugarcane Suspension CellsPlant Physiology, 1984
- Interamino Acid Inhibition of Transport in Higher PlantsPlant Physiology, 1981
- Amino Acid Transport into Cultured Tobacco CellsPlant Physiology, 1981
- Assay of proteins in the presence of interfering materialsAnalytical Biochemistry, 1976