Decreased Survival of Experimental Critical Flaps in Rats after Sensory Denervation with Capsaicin

Abstract
The role of capsaicin-sensitive primary sensory neurons on the survival of experimental critical flaps was studied in the rat. Pretreatment with capsaicin, which depletes neuropeptide transmitter content from primary sensory neurons, caused a dramatic decrease in flap survival area compared to normal animals. In contrast, pretreatment with reserpine, which depletes catecholamines from adrenergic neurons, including the sympathetic postganglionic fibers, resulted in a significant increase in the survival area. It was concluded that both capsaicin-sensitive primary sensory neurons and sympathetic postganglionic adrenergic neurons play a role in systemic vascular regulation and that intact primary sensory neurons are of importance for the survival of ischemic tissue.