Submillimetre galaxies reside in dark matter haloes with masses greater than 3 × 1011 solar masses
- 16 February 2011
- journal article
- letter
- Published by Springer Nature in Nature
- Vol. 470 (7335) , 510-512
- https://doi.org/10.1038/nature09771
Abstract
The extragalactic background light at far-infrared wavelengths1,2,3 comes from optically faint, dusty, star-forming galaxies in the Universe with star formation rates of a few hundred solar masses per year4. These faint, submillimetre galaxies are challenging to study individually because of the relatively poor spatial resolution of far-infrared telescopes5,6. Instead, their average properties can be studied using statistics such as the angular power spectrum of the background intensity variations7,8,9,10. A previous attempt11 at measuring this power spectrum resulted in the suggestion that the clustering amplitude is below the level computed with a simple ansatz based on a halo model12. Here we report excess clustering over the linear prediction at arcminute angular scales in the power spectrum of brightness fluctuations at 250, 350 and 500 μm. From this excess, we find that submillimetre galaxies are located in dark matter haloes with a minimum mass, Mmin, such that log10[Mmin/M⊙] = at 350 μm, where M⊙ is the solar mass. This minimum dark matter halo mass corresponds to the most efficient mass scale for star formation in the Universe13, and is lower than that predicted by semi-analytical models for galaxy formation14.Keywords
All Related Versions
This publication has 28 references indexed in Scilit:
- HerMES: The SPIRE confusion limitPublished by EDP Sciences ,2010
- BLAST: CORRELATIONS IN THE COSMIC FAR-INFRARED BACKGROUND AT 250, 350, AND 500 μm REVEAL CLUSTERING OF STAR-FORMING GALAXIESThe Astrophysical Journal, 2009
- Anisotropy Studies of the Unresolved Far‐Infrared BackgroundThe Astrophysical Journal, 2007
- Astrophysical and cosmological information from large-scale submillimetre surveys of extragalactic sourcesMonthly Notices of the Royal Astronomical Society, 2007
- The Cosmic Infrared Background: Measurements and ImplicationsAnnual Review of Astronomy and Astrophysics, 2001
- Probing Early Structure Formation with Far‐Infrared Background CorrelationsThe Astrophysical Journal, 2001
- Correlations in the Far‐Infrared BackgroundThe Astrophysical Journal, 2000
- The Spectrum of the Extragalactic Far‐Infrared Background from theCOBEFIRAS ObservationsThe Astrophysical Journal, 1998
- TheCOBEDiffuse Infrared Background Experiment Search for the Cosmic Infrared Background. IV. Cosmological ImplicationsThe Astrophysical Journal, 1998
- High-redshift star formation in the Hubble Deep Field revealed by a submillimetre-wavelength surveyNature, 1998