Retinoic acid alters hindbrain Hox code and induces transformation of rhombomeres 2/3 into a 4/5 identity
- 1 December 1992
- journal article
- Published by Springer Nature in Nature
- Vol. 360 (6406) , 737-741
- https://doi.org/10.1038/360737a0
Abstract
It has been suggested that Hox genes play an important part in the patterning of limbs, vertebrae and craniofacial structures by providing an ordered molecular system of positional values, termed the Hox code. Little is known about the nature of the signals that govern the establishment and regulation of Hox genes, but retinoic acid can affect the expression of these genes in cell lines and in embryonic tissues. On the basis of experimental and clinical evidence, the hindbrain and branchial region of the head are particularly sensitive to the effects of retinoic acid but the phenotypes are complex and hard to interpret, and how and if they relate to Hox expression has not been clear. Here we follow the changes induced by retinoic acid to hindbrain segmentation and the branchial arches using transgenic mice which contain lacZ reporter genes that reveal the endogenous segment-restricted expression of the Hox-B1 (Hox-2.9), Hox-B2(Hox-2.8) and Krox-20 genes. Our results show that these genes rapidly respond to exposure to retinoic acid at preheadfold stages and undergo a progressive series of changes in segmental expression that are associated with specific phenotypes in hindbrain of first branchial arch. Together the molecular and anatomical alterations indicate that retinoic acid has induced changes in the hindbrain Hox code which result in the homeotic transformation of rhombomeres (r) 2/3 to an r4/5 identity. A main feature of this rhombomeric phenotype is that the trigeminal motor nerve is transformed to a facial identity. Furthermore, in support of this change in rhombomeric identity, neural crest cells derived from r2/3 also express posterior Hox markers suggesting that the retinoic acid-induced transformation extends to multiple components of the first branchial arch.Keywords
This publication has 30 references indexed in Scilit:
- Targeted misexpression of Hox-4.6 in the avian limb bud causes apparent homeotic transformationsNature, 1992
- Homeosis in the mouse induced by a null mutation in the Hox-3.1 genePublished by Elsevier ,1992
- Developmental defects of the ear, cranial nerves and hindbrain resulting from targeted disruption of the mouse homeobox geneHox-#150;1.6Nature, 1992
- A distinct Hox code for the branchial region of the vertebrate headNature, 1991
- Disruption of the Hox-1.6 homeobox gene results in defects in a region corresponding to its rostral domain of expressionCell, 1991
- Expression of the homeobox Hox-4 genes and the specification of position in chick wing developmentNature, 1991
- Regionally restricted developmental defects resulting from targeted disruption of the mouse homeobox gene hox-1.5Nature, 1991
- Variations of cervical vertebrate after expression of a Hox-1.1 transgene in micePublished by Elsevier ,1990
- Coordinate expression of the murine Hox-5 complex homoeobox-containing genes during limb pattern formationNature, 1989
- Craniofacial abnormalities induced by ectopic expression of the homeobox gene Hox-1.1 in transgenic miceCell, 1989