Ecotoxicity of Zinc in Spiked Artificial Soils versus Contaminated Field Soils
- 2 October 2001
- journal article
- research article
- Published by American Chemical Society (ACS) in Environmental Science & Technology
- Vol. 35 (21) , 4295-4300
- https://doi.org/10.1021/es0100219
Abstract
Metal bioavailability is influenced by soil characteristics and aging period. In the present study, both factors were modeled by comparing metal bioavailability in spiked artificial soil and historically contaminated field soils. The chronic toxicity of zinc to Folsomia candida in spiked artificial soils could be predicted with a model based on pH, cation exchange capacity, and total zinc concentration. However, this model could not adequately predict chronic zinc toxicity in contaminated field soils. Porewater concentration and water- and calcium chloride-extracted zinc fractions of the contaminated field soils were lower than those predicted using models developed for spiked artificial soils, indicating that the effect of aging on metal bioavailability should be taken into account. The reproduction of F. candida in contaminated field soils was lower than predicted with models developed using zinc concentration in the porewater and the water- and calcium chloride-extracted fractions in spiked artificial soils. This suggests that these fractions are not the only bioavailable zinc fractions and that dietary metal exposure might also be an important route of uptake under environmentally relevant conditions. Aging and dietary uptake should be studied urgently in order to be able to perform effect-based risk assessments of metal contaminated soils.Keywords
This publication has 7 references indexed in Scilit:
- Effects of variations of the organic matter content and pH of soils on the availability and toxicity of zinc to the earthworm Eisenia fetidaPedobiologia, 2024
- Multivariate test designs to assess the influence of zinc and cadmium bioavailability in soils on the toxicity toEnchytraeus albidusEnvironmental Toxicology and Chemistry, 2000
- Modeling Cd and Zn Sorption to Hydrous Metal OxidesEnvironmental Science & Technology, 2000
- Effects of pH on the toxicity of cadmium, copper, lead and zinc to Folsomia candida Willem, 1902 (Collembola) in a standard laboratory test systemChemosphere, 1996
- Extrapolation of the laboratory-based OECD earthworm toxicity test to metal-contaminated field sitesEcotoxicology, 1995
- Confidence Limits for Hazardous Concentrations Based on Logistically Distributed NOEC Toxicity DataEcotoxicology and Environmental Safety, 1993
- Methods for Calculating an LC50Published by ASTM International ,1977