Density of states and critical resistivity of strongly disordered systems
- 15 April 1983
- journal article
- research article
- Published by American Physical Society (APS) in Physical Review B
- Vol. 27 (8) , 4628-4631
- https://doi.org/10.1103/physrevb.27.4628
Abstract
Recently we proposed that the anomalous diffusion at short length scales associated with localization is responsible for the unusual sensitivity of the high- superconductors to disorder. We showed that the Coulomb pseudopotential in superconductors is a universal function of where is the resistivity and is a critical resistivity characteristic of the system, and obtained relatively small values of from the experimental curves. In the present paper we show that in the strong-disorder region in three dimensions the density of states is also a universal function of the same parameter, so that in the absence of any microscopic calculation of , a comparison of the density of states and as function of disorder provides a crucial test of the theory. We find very good agreement with existing data on granular Al. We also find that the density of states has a logarithmic energy dependence in this region, a result independently obtained by Lee. In addition, we make quantitative predictions about where and when to expect this logarithmic correction to be important, and comment on why it has not been observed yet.
Keywords
This publication has 5 references indexed in Scilit:
- Density of states and screening near the mobility edgePhysical Review B, 1982
- Scaling theory of the metal-insulator transition in amorphous materialsPhysical Review B, 1981
- Metal-Insulator Transition in Granular AluminumPhysical Review Letters, 1981
- Zero bias anomaly in tunnel resistance and electron-electron interactionSolid State Communications, 1979
- Scaling Theory of Localization: Absence of Quantum Diffusion in Two DimensionsPhysical Review Letters, 1979