Cardiovascular Tissue Engineering: A New Laminar Flow Chamber for In Vitro Improvement of Mechanical Tissue Properties

Abstract
A new in vitro flow system was developed to investigate the impact of laminar flow on extracellular matrix formation and tissue development. The dynamic in vitro system was designed to provide a cross flow arrangement of main flow induced by a dialysis roller pump (500 ml/min), and nutrition flow by a perfusion pump (3 ml/hr). Poly-L-lysine precoated polyglycolic acid (PGA) scaffolds (3.14 cm2) were seeded with myofibroblasts of human aortic origin (3.0 × 106 cells/mesh) and incubated for 14 days under static conditions. The tissue was exposed to shear stress over a time period of 14 days (n = 4). The control group was seeded under static conditions (n = 4). To obtain a CO2 independent medium, 25 mM HEPES and 1 mM bicarbonate buffer was supplemented to modified MEM without bicarbonate. Gas samples were collected from the medium, and hydroxyproline assay was performed as a marker of collagen production. The newly developed flow system maintained stable cell culture conditions, with the hydroxyproline concentration significantly higher in group F (p in vitro