Reevaluation of X-Ray Atomic Energy Levels

Abstract
All of the x-ray emission wavelengths have recently been reevaluated and placed on a consistent Å* scale. For most elements these data give a highly overdetermined set of equations for energy level differences, which have been solved by least-squares adjustment for each case. This procedure makes "best" use of all x-ray wavelength data, and also permits calculation of the probable error for each energy difference. Photoelectron measurements of absolute energy levels are more precise than x-ray absorption edge data. These have been used to establish the absolute scale for eighty-one elements and, in many cases, to provide additional energy level difference data. The x-ray absorption wavelengths were used for eight elements and ionization measurements for two; the remaining five were interpolated by a Moseley diagram involving the output values of energy levels from adjacent elements. Probable errors are listed on an absolute energy basis. In the original source of the present data, a table of energy levels in Rydberg units is given. Difference tables in volts, Rydbergs, and milli-Å* wavelength units, with the respective probable errors, are also included there.

This publication has 18 references indexed in Scilit: