Molecular mixing in Rayleigh–Taylor instability

Abstract
Mixing produced by Rayleigh–Taylor instability at the interface between two layers is the subject of a comparative study between laboratory and numerical experiments. The laboratory experiments consist of a layer of brine initially at rest on top of a layer of fresh water. When a horizontal barrier separating the two layers is removed, the ensuing motion and the mixing that is produced is studied by a number of diagnostic techniques. This configuration is modelled numerically using a three-dimensional code, which solves the Euler equations on a 1803grid. A comparison of the numerical results and the experimental results is carried out with the aim of making a careful assessment of the ability of the code to reproduce the experiments. In particular, it is found that the motions are quite sensitive to the presence of large scales produced when the barrier is removed, but the amount and form of the mixing is not very sensitive to the initial conditions. The implications of this comparison for improvements in the experimental and numerical techniques are discussed.

This publication has 24 references indexed in Scilit: