ZERO AND FINITE TEMPERATURE STUDY OF SINGLE FULLERENE CAGES AND CARBON “ONIONS” — GEOMETRY AND SHAPE

Abstract
Scaling arguments are used to show that above a critical size of several thousand atoms, there is a stability crossover from single to multilayer cages. Conjugate gradient minimization using a classical three-body interatomic potential, as well as tight-binding electronic structure calculations yield ground-state configurations for large fullerene shells that are polyhedral with clearly faceted geometry. The structure, energetics and configurational entropy associated with low-energy defects are calculated and the number of defects estimated as a function of temperature. The role of these thermally generated defects on the shape of large fullerenes is investigated in order to explain the nearly spherical shapes of the newly discovered carbon “onions”.

This publication has 0 references indexed in Scilit: