Nutritional Improvement of Legume Proteins through Disulfide Interchange

Abstract
Treatment of raw soy flour with L-cysteine or N-acetyl-L-cysteine results in the introduction of new half-cystine residues into sulfur-poor legume proteins, with a corresponding improvement in nutritional quality as measured by the protein efficiency ratio (PER) in rats. The proteins are modified through formation of mixed disulfide bonds among added sulfhydryl compounds, proteolytic enzyme inhibitors, and structural legume proteins. This modification leads to loss of inhibitory activity and increased protein digestibility and nutritive value. Sodium sulfite is more effective than cysteine in facilitating inactivation of trypsin inhibitors in soy flour. The synergistic effect of sodium sulfite and heat may be due to (1) ability to induce rearrangement of protein disulfide bonds to produce new structural entities without altering the amino acid composition and to (2) the fact that the new structures lose their ability to complex with trypsin or chymotrypsin. The same treatment inactivated hemagglutinins (lectins) in lima bean flour. These considerations suggest a key role for sulfur amino acids in the nutritional quality and safety of legumes.