Abstract
Changes to life history traits are often concomitant with prolonged periods of exploitation. In the Northwest Atlantic, 30- to 40-year declines of more than 90% of Atlantic cod (Gadus morhua) have been associated with significant reductions in age and length at maturity, changes most parsimoniously explained as genetic responses to fishing. Increased survival costs of reproduction associated with earlier maturity, resulting in higher natural mortality and shorter life span, negatively affect population growth rate and rate of recovery. Coupled with lower hatching rate among first-time spawners and smaller size at maturity, a modest reduction in age from 6 to 4 years can reduce annual population growth in Atlantic cod by 25%–30%, based on the output of a stochastic, age-structured life history model. Earlier maturity more than doubles the probability of negative population growth every generation. These results underscore the potential for fishing-induced changes to life history traits alone to generate slow or negligible recovery in marine fishes, exacerbating negative impacts on population growth resulting from ecosystem-level alterations to interspecific competition and predation.