Cytochrome c and cytochrome c oxidase interactions: the effects of ionic strength and hydrostatic pressure studied with site-specific modifications of cytochrome c
- 1 July 1992
- journal article
- research article
- Published by Canadian Science Publishing in Biochemistry and Cell Biology
- Vol. 70 (7) , 539-547
- https://doi.org/10.1139/o92-084
Abstract
Seven cytochromes c, in which individual lysines have been modified to the propylthiobimane derivatives, have been prepared. These derivatives were also converted to the porphyrin cytochromes c by treatment with HF. The properties of both types of modified proteins were studied in their reactions with cytochrome c oxidase. The results show that lysines 25, 27, 60, 72, and 87 do not contribute a full charge to the binding interaction with the oxidase. These five residues, with the exception of the lysine-60 derivative, are on the front surface of the protein and contain the solvent-accessible edge of the heme prosthetic group. By contrast, lysines 8 and 13 at the top of the front surface do contribute a full charge to the binding interaction with the oxidase. The removal of the positive charge on any one lysine weakens the binding to cytochrome c oxidase by at least 1 kcal (1 cal = 4.1868 J). The presence of bimane at lysines 13 and 87 clearly forces the separation of the cytochrome c and oxidase, but this does not occur with the other complexes. The bimane-modified lysine-13 protein, and to a lesser extent that modified at lysine 8, show the interesting effect of enhanced complex formation with cytochrome c oxidase when subjected to pressure, possibly because of entrapment of water at the newly created interface of the complex. Our observations indicate that the two proteins of the cytochrome c – cytochrome oxidase complex have preferred, but not obligatory, spatial orientations and that interaction occurs without either protein losing significant portions of its hydration shell.Key words: cytochrome oxidase, cytochrome c, binding, hydrostatic pressure.Keywords
This publication has 0 references indexed in Scilit: