Abstract
We classify gamma-ray bursts (GRBs) according to their observed durations and physical properties of their spectra. We find that long/hard bursts (of duration T_90 > 2.5 s, and typical photon energy E_p > 0.8 MeV corresponding to BATSE's energy fluence hardness H^e_{32} > 3) show the strongest deviation from the three-dimensional Euclidean brightness distribution. The majority of GRBs, i.e., short bursts (T_90 < 2.5 s) and long/soft bursts (with T_90 > 2.5 s, and H^e_{32} < 3) show little, if any, deviations from the Euclidean distribution. These results contradict the prediction of simple extragalactic GRB models that the most distant bursts should be the most affected by cosmological energy redshift and time-dilation (long/soft GRBs). The strongly non-Euclidean GRB subclass has very hard spectra of typical photon energy above 1 MeV, i.e., outside the ideal energy range for optimal detection by BATSE. We discuss possible explanations of this puzzling feature of GRBs.Comment: 15 pages, LATEX text plus two postscript figures included. Submitted to ApJ Letters on November 24, 1997. Accepted on February 13, 199
All Related Versions