Evidence from mutation spectra that the UV hypermutability of xeroderma pigmentosum variant cells reflects abnormal, error-prone replication on a template containing photoproducts.
Open Access
- 1 July 1993
- journal article
- research article
- Published by Taylor & Francis in Molecular and Cellular Biology
- Vol. 13 (7) , 4276-4283
- https://doi.org/10.1128/mcb.13.7.4276
Abstract
Xeroderma pigmentosum (XP) variant patients are genetically predisposed to sunlight-induced skin cancer. Fibroblasts derived from these patients are extremely sensitive to the mutagenic effect of UV radiation and are abnormally slow in replicating DNA containing UV-induced photoproducts. However, unlike cells from the majority of XP patients, XP variant cells have a normal or nearly normal rate of nucleotide excision repair of such damage. To determine whether their UV hypermutability reflected a slower rate of excision of photoproducts specifically during early S phase when the target gene for mutations, i.e., the hypoxanthine (guanine) phosphoribosyltransferase gene (HPRT), is replicated, we synchronized diploid populations of normal and XP variant fibroblasts, irradiated them in early S phase, and compared the rate of loss of cyclobutane pyrimidine dimers and 6-4 pyrimidine-pyrimidones from DNA during S phase. There was no difference. Both removed 94% of the 6-4 pyrimidine-pyrimidones within 8 h and 40% of the dimers within 11 h. There was also no difference between the two cell lines in the rate of repair during G1 phase. To determine whether the hypermutability resulted from abnormal error-prone replication of DNA containing photoproducts, we determined the spectra of mutations induced in the coding region of the HPRT gene of XP variant cells irradiated in early S and G1 phases and compared with those found in normal cells. The majority of the mutations in both types of cells were base substitutions, but the two types of cells differed significantly from each other in the kinds of substitutions, but the two types differed significantly from each other in the kinds of substitutions observed either in mutants from S phase (P < 0.01) or from G1 phase (P = 0.03). In the variant cells, the substitutions were mainly transversions (58% in S, 73% in G1). In the normal cells irradiated in S, the majority of the substitutions were G.C --> A.T, and most involved CC photoproducts in the transcribed strand. In the variant cells irradiated in S, substitutions involving cytosine in the transcribed strand were G.C --> T.A transversions exclusively. G.C --> A.T transitions made up a much smaller fraction of the substitutions than in normal cells (P < 0.02), and all of them involved photoproducts located in the nontranscribed strand. The data strongly suggest that XP variant cells are much less likely than normal cells to incorporate either dAMP or dGMP opposite the pyrimidines involved in photoproducts. This would account for their significantly higher frequency of mutants and might explain their abnormal delay in replicating a UV-damaged template.Keywords
This publication has 32 references indexed in Scilit:
- Amplification and direct nucleotide sequencing of cDNA from the lysate of low numbers of diploid human cellsGene, 1989
- Xeroderma Pigmentosum Variant Cells Are Not Defective in the Repair of (6–4) PhotoproductsInternational Journal of Radiation Biology, 1987
- The frequency of mutants in human fibroblasts UV-irradiated at various times during S-phase suggests that genes for thioguanine- and diphtheria toxin-resistance are replicated earlyMutation Research - Fundamental and Molecular Mechanisms of Mutagenesis, 1985
- (6–4)Photoproducts are removed from the DNA of UV-irradiated mammalian cells more efficiently than cyclobutane pyrimidine dimersMutation Research Letters, 1985
- XERODERMA PIGMENTOSUM FIBROBLASTS INCLUDING CELLS FROM XP VARIANTS ARE ABNORMALLY SENSITIVE TO THE MUTAGENIC AND CYTOTOXIC ACTION OF BROAD SPECTRUM SIMULATED SUNLIGHTPhotochemistry and Photobiology, 1984
- Extent of excision repair before DNA synthesis determines the mutagenic but not the lethal effect of UV radiationMutation Research - Fundamental and Molecular Mechanisms of Mutagenesis, 1982
- Mechanisms of inhibition of DNA replication by ultraviolet light in normal human and xeroderma pigmentosum fibroblastsJournal of Molecular Biology, 1981
- Repair of UV-endonuclease-susceptible sites in the 7 complementation groups of xeroderma pigmentosum a through GMutation Research - Fundamental and Molecular Mechanisms of Mutagenesis, 1979
- Ultraviolet mutagenesis of normal and xeroderma pigmentosum variant human fibroblastsMutation Research - Fundamental and Molecular Mechanisms of Mutagenesis, 1979
- Identification of the altered bases in mutated single-stranded DNAJournal of Molecular Biology, 1964