Sign-changing solutions of competition–diffusion elliptic systems and optimal partition problems
- 1 April 2012
- journal article
- Published by European Mathematical Society - EMS - Publishing House GmbH in Annales de l'Institut Henri Poincaré C, Analyse non linéaire
- Vol. 29 (2) , 279-300
- https://doi.org/10.1016/j.anihpc.2011.10.006
Abstract
In this paper we prove the existence of infinitely many sign-changing solutions for the system of m Schrödinger equations with competition interactions −\mathrm{\Delta }u_{i} + a_{i}u_{i}^{3} + \beta u_{i}\sum \limits_{j \neq i}u_{j}^{2} = \lambda _{i,\beta }u_{i},\:u_{i} \in H_{0}^{1}(\Omega ),\:i = 1,\dots,m where Ω is a bounded domain, \beta > 0 and a_{i}⩾0 ∀i . Moreover, for a_{i} = 0 , we show a relation between critical energies associated with this system and the optimal partition problem \inf_{\scriptsize \begin{array}{c} \omega_{i} \subset \Omega \:\text{open}\\ \omega_{i} \cap \omega_{j} = \emptyset \:\forall i \neq j \end{array} } \sum_{i = 1}^{m}\lambda _{k_{i}}(\omega _{i}), where \lambda _{k_{i}}(\omega ) denotes the k_{i} -th eigenvalue of −Δ in H_{0}^{1}(\omega ) . In the case k_{i}⩽2 we show that the optimal partition problem appears as a limiting critical value, as the competition parameter β diverges to +∞ . Résumé: Dans cet article nous montrons lʼexistence dʼune infinité de solutions qui changent de signe pour le système dʼéquations de Schrödinger avec des interactions compétitives −\mathrm{\Delta }u_{i} + a_{i}u_{i}^{3} + \beta u_{i}\sum \limits_{j \neq i}u_{j}^{2} = \lambda _{i,\beta }u_{i},\:u_{i} \in H_{0}^{1}(\Omega ),\:i = 1,…,m où Ω est un domaine borné, \beta > 0 et a_{i}⩾0 ∀i . De plus, quand a_{i} = 0 , nous démontrons une relation entre les énergies critiques associées à ce système et le problème de partition optimale \inf_{\scriptsize \begin{array}{c} \omega_{i} \subset \Omega \:\text{open}\\ \omega_{i} \cap \omega_{j} = \emptyset \:\forall i \neq j \end{array} } \sum_{i = 1}^{m}\lambda _{k_{i}}(\omega _{i}), \lambda _{k_{i}}(\omega ) indiques la k_{i} -ème valeur propre de lʼopérateur −Δ in H_{0}^{1}(\omega ) . Dans le cas k_{i}⩽2 , nous montrons que le problème de partition optimale apparaît comme une valeur limite critique, en tant que paramètre de compétition β diverge vers +∞ .Keywords
All Related Versions
Funding Information
- Fundação para a Ciência e a Tecnologia (ISFL/1/209, SFRH/BPD/69314/2010)
This publication has 15 references indexed in Scilit:
- Existence and bounds of positive solutions for a nonlinear Schrödinger systemProceedings of the American Mathematical Society, 2010
- On a new index theory and non semi-trivial solutions for elliptic systemsDiscrete & Continuous Dynamical Systems, 2010
- A Bahri–Lions theorem revisitedAdvances in Mathematics, 2009
- Uniform Hölder Bounds for Nonlinear Schrödinger Systems with Strong CompetitionCommunications on Pure and Applied Mathematics, 2009
- A Liouville theorem, a-priori bounds, and bifurcating branches of positive solutions for a nonlinear elliptic systemCalculus of Variations and Partial Differential Equations, 2009
- Singularly perturbed elliptic systems and multi-valued harmonic functions with free boundariesJournal of the American Mathematical Society, 2008
- Asymptotic behaviour of solutions of planar elliptic systems with strong competitionNonlinearity, 2008
- On a class of optimal partition problems related to the Fučík spectrum and to the monotonicity formulaeCalculus of Variations and Partial Differential Equations, 2005
- Sign Changing Solutions of Superlinear Schrödinger EquationsCommunications in Partial Differential Equations, 2005
- Segregated nodal domains of two-dimensional multispecies Bose–Einstein condensatesPhysica D: Nonlinear Phenomena, 2004