SU(4) Skyrmions and Activation Energy Anomaly in Bilayer Quantum Hall Systems

  • 18 November 2003
Abstract
The bilayer QH system has four energy levels in the lowest Landau level, corresponding to the layer and spin degrees of freedom. We investigate the system in the regime where all four levels are nearly degenerate and equally active. The underlying group structure is SU(4). At $\nu =1$ the QH state is a charge-transferable state between the two layers and the SU(4) isospin coherence develops spontaneously. Quasiparticles are isospin textures to be identified with SU(4) skyrmions. One quasiparticle consists of a pair of charged excitations in the front and back layers, yielding a capacitance energy. The SU(4) skyrmion evolves continuously from the pseudospin-skyrmion limit into the spin-skyrmion limit as the system is transformed from the balanced point to the monolayer point by controlling the bias voltage. Our theoretical result explains quite well the experimental data due to Murphy et al. and Sawada et al. on the activation energy anomaly induced by applying parallel magnetic field.

This publication has 0 references indexed in Scilit: