ATP pools and transients in the blue-green alga, Anabaena cylindrica

Abstract
Anabaena cylindrica grown in steady state continuous culture has an extractable ATP pool, measured on the basis of the luciferin-luciferase assay of 165±35 nmoles ATP mg chla -1. This pool is maintained by a dynamic balance between the rate of ATP synthesis and the rate of ATP utilization. Phosphorylating mechanisms which can maintain the pool in the short term are total photophosphorylation, cyclic photophosphorylation and oxidative phosphorylation. The alga can maintain its ATP pool by switching rapidly from one of these phosphorylating mechanisms to another depending on the environmental conditions. At each switch-over there is a transient drop in the ATP pool for a few seconds. On switching to conditions where only substrate level phosphorylation operates, the ATP pool falls immediately, but takes several hours to recover. The apparent rates of ATP synthesis by total photophosphorylation and by cyclic photophosphorylation are both much higher (210±30 and 250±13 μmoles ATP mg chla -1 h-1 respectively) than the apparent rate of ATP synthesis by oxidative phosphorylation (22±3 μmoles ATP mg chla -1 h-1). In long term experiments the ATP pool is maintained when total photophosphorylation is operating. It cannot be maintained in the long term by cyclic photophosphorylation alone in the absence of photosystem II activity or endogenous carbon compounds, or by oxidative phosphorylation in the absence of endogenous carbon compounds. Measurements of ATP, ADP and AMP show that the total pool of adenylates is similar in the light and in the dark in the short term. There is only limited production of ATP under dark anaerobic conditions when glycolysis and substrate phosphorylation can operate which suggests that these processes are of limited significance in providing ATP in Anabaena cylindrica.

This publication has 43 references indexed in Scilit: