Peptide/MHC Tetramer–Based Sorting of CD8+ T Cells to a Leukemia Antigen Yields Clonotypes Drawn Nonspecifically from an Underlying Restricted Repertoire

Abstract
Testing of T cell–based cancer therapeutics often involves measuring cancer antigen–specific T-cell populations with the assumption that they arise from in vivo clonal expansion. This analysis, using peptide/MHC tetramers, is often ambiguous. From a leukemia cell line, we identified a CDK4-derived peptide epitope, UNC-CDK4-1 (ALTPVVVTL), that bound HLA-A*02:01 with high affinity and could induce CD8+ T-cell responses in vitro. We identified UNC-CDK4-1/HLA-A*02:01 tetramer+ populations in 3 of 6 patients with acute myeloid leukemia who had undergone allogeneic stem cell transplantation. Using tetramer-based, single-cell sorting and T-cell receptor β (TCRβ) sequencing, we identified recurrent UNC-CDK4-1 tetramer–associated TCRβ clonotypes in a patient with a UNC-CDK4-1 tetramer+ population, suggesting in vivo T-cell expansion to UNC-CDK4-1. In parallel, we measured the patient's TCRβ repertoire and found it to be highly restricted/oligoclonal. The UNC-CDK4-1 tetramer–associated TCRβ clonotypes represented >17% of the entire TCRβ repertoire—far in excess of the UNC-CDK4-1 tetramer+ frequency—indicating that the recurrent TCRβ clonotypes identified from UNC-CDK-4-1 tetramer+ cells were likely a consequence of the extremely constrained T-cell repertoire in the patient and not in vivo UNC-CDK4-1–driven clonal T-cell expansion. Mapping recurrent TCRβ clonotype sequences onto TCRβ repertoires can help confirm or refute antigen-specific T-cell expansion in vivo. Cancer Immunol Res; 3(3); 228–35. ©2015 AACR.