Hierarchical mixtures of experts and the EM algorithm

Abstract
We present a tree-structured architecture for supervised learning. The statistical model underlying the architecture is a hierarchical mixture model in which both the mixture coefficients and the mixture components are generalized linear models (GLIMs). Learning is treated as a maximum likelihood problem; in particular, we present an expectation-maximization (EM) algorithm for adjusting the parameters of the architecture. We also develop an online learning algorithm in which the parameters are updated incrementally. Comparative simulation results are presented in the robot dynamics domain.

This publication has 7 references indexed in Scilit: