Quantitative Spectroscopy of O Stars at Low Metallicity. O Dwarfs in NGC 346
Abstract
We present the results of a detailed UV and optical spectral analysis of the properties of 6 dwarf O-type stars in the SMC H II region NGC 346. Stellar parameters, chemical abundances, and wind parameters have been determined using NLTE line blanketed models calculated with the photospheric code, Tlusty, and with the wind code, CMFGEN. The results, in particular iron abundances, obtained with the two NLTE codes compare very favorably, demonstrating that basic photospheric parameters of O dwarfs can be reliably determined using NLTE static model atmospheres. The two NLTE codes require a microturbulent velocity to match the observed spectra. Our results hint at a decrease of the microturbulent velocity from early O stars to late O stars. Similarly to several recent studies of galactic, LMC and SMC stars, we derive effective temperatures lower than predicted from the widely-used relation between spectral type and Teff, resulting in lower stellar luminosities and lower ionizing fluxes. From evolutionary tracks in the HR diagram, we find an age of 3 10^6 years for NGC 346. A majority of the stars in our sample reveal CNO-cycle processed material at their surface during the MS stage, indicating thus fast stellar rotation and/or very efficient mixing processes. We obtain an overall metallicity, Z = 0.2 Zsun, in good agreement with other recent analyses of SMC stars. The derived mass loss rate of the three most luminous stars agrees with recent theoretical predictions. However, the three other stars of our sample reveal very weak wind signatures. We obtain mass loss rates that are significantly lower than 10^{-8} Msun/yr, which is below the predictions of radiative line-driven wind theory by an order of magnitude or more. (abridged version)Keywords
All Related Versions
This publication has 0 references indexed in Scilit: