MELTING OF ICE AROUND A HORIZONTAL ISOTHERMAL CYLINDRICAL HEAT SOURCE

Abstract
Processes during melting from a horizontal cylindrical heat source of uniform surface temperature embedded in ice have been studied experimentally. The volume of the melt and its shape were photographed at different times for various constant temperatures of the heat source. At early times and under all conditions, the melt occupied a cylindrical annulus. At later times free convective motion caused pear-shaped melt contours which pointed downward when the temperatures of the heat source were below 7°C and upward when the temperatures were above 8°C. Instabilities in cellular natural convection motion resulted in waviness of the interface. The location and magnitude of these ripples were found to depend on the temperature of the heat source and the melt layer thickness. Shadowgraph techniques were used to determine local heat transfer coefficients at the heat source surface.