A Time-Domain Implementation of Surface Acoustic Impedance Condition with and Without Flow

Abstract
The impedance condition in computational aeroacoustic applications is required in order to model acoustically treated walls. The application of this condition in time-domain methods, however, is extremely difficult because of the convolutions involved. In this paper, a time-domain method is developed which overcomes the computational difficulties associated with these convolutions. This method builds on the z-transform from control and signal processing theory and the z-domain model of the impedance. The idea of using the z-domain operations originates from the computational electromagnetics community. When the impedance is expressed in the z-domain with a rational function, the inverse z-transform of the impedance condition results in only infinite impulse response type, digital, recursive filter operations. These operations, unlike convolutions, require only limited past-time knowledge of the acoustic pressures and velocities on the surface. Examples of one- and two-dimensional problems with and without flow indicate that the method promises success in aeroacoustic applications.
Keywords

This publication has 0 references indexed in Scilit: