Mutational Analysis Suggests That Activation of the Yeast Pheromone Response Mitogen-activated Protein Kinase Pathway Involves Conformational Changes in the Ste5 Scaffold Protein
- 1 November 2000
- journal article
- Published by American Society for Cell Biology (ASCB) in Molecular Biology of the Cell
- Vol. 11 (11) , 4033-4049
- https://doi.org/10.1091/mbc.11.11.4033
Abstract
Ste5 is essential for pheromone response and binds components of a mitogen-activated protein kinase (MAPK) cascade: Ste11 (MEKK), Ste7 (MEK), and Fus3 (MAPK). Pheromone stimulation releases Gβγ (Ste4-Ste18), which recruits Ste5 and Ste20 (p21-activated kinase) to the plasma membrane, activating the MAPK cascade. A RING-H2 domain in Ste5 (residues 177–229) negatively regulates Ste5 function and mediates its interaction with Gβγ. Ste5(C177A C180A), carrying a mutated RING-H2 domain, cannot complement a ste5Δ mutation, yet supports mating even in ste4Δ ste5Δ cells when artificially dimerized by fusion to glutathioneS-transferase (GST). In contrast, wild-type Ste5 fused to GST permits mating of ste5Δ cells, but does not allow mating of ste4Δ ste5Δ cells. This differential behavior provided the basis of a genetic selection for STE5 gain-of-function mutations. MATaste4Δ ste5Δ cells expressing Ste5-GST were mutagenized chemically and plasmids conferring the capacity to mate were selected. Three independent single-substitution mutations were isolated. These constitutive STE5 alleles induce cell cycle arrest, transcriptional activation, and morphological changes normally triggered by pheromone, even when Gβγ is absent. The first, Ste5(C226Y), alters the seventh conserved position in the RING-H2 motif, confirming that perturbation of this domain constitutively activates Ste5 function. The second, Ste5(P44L), lies upstream of a basic segment, whereas the third, Ste5(S770K), is situated within an acidic segment in a region that contacts Ste7. None of the mutations increased the affinity of Ste5 for Ste11, Ste7, or Fus3. However, the positions of these novel-activating mutations suggested that, in normal Ste5, the N terminus may interact with the C terminus. Indeed, in vitro, GST-Ste5(1-518) was able to associate specifically with radiolabeled Ste5(520-917). Furthermore, both the P44L and S770K mutations enhanced binding of full-length Ste5 to GST-Ste5(1-518), whereas they did not affect Ste5 dimerization. Thus, binding of Gβγ to the RING-H2 domain may induce a conformational change that promotes association of the N- and C-terminal ends of Ste5, stimulating activation of the MAPK cascade by optimizing orientation of the bound kinases and/or by increasing their accessibility to Ste20-dependent phosphorylation (or both). In accord with this model, the novel Ste5 mutants copurified with Ste7 and Fus3 in their activated state and their activation required Ste20.Keywords
This publication has 72 references indexed in Scilit:
- Studies on transformation of Escherichia coli with plasmidsPublished by Elsevier ,2006
- Nuclear sequestration of the exchange factor Cdc24 by Far1 regulates cell polarity during yeast matingNature Cell Biology, 2000
- Cell Polarity in YeastAnnual Review of Cell and Developmental Biology, 1999
- The guanine-nucleotide-exchange factor Cdc24p is targeted to the nucleus and polarized growth sitesCurrent Biology, 1999
- CELL POLARITY AND MORPHOGENESIS IN BUDDING YEASTAnnual Review of Microbiology, 1998
- Membrane recruitment of the kinase cascade scaffold protein Ste5 by the Gβγ complex underlies activation of the yeast pheromone response pathwayGenes & Development, 1998
- Functional binding between Gβ and the LIM domain of Ste5 is required to activate the MEKK Ste11Current Biology, 1998
- FAR1 is required for oriented polarization of yeast cells in response to mating pheromones.The Journal of cell biology, 1995
- Direct Inhibition of the Yeast Cyclin-Dependent Kinase Cdc28-Cln by Far1Science, 1994
- [12] One-step gene disruption in yeastPublished by Elsevier ,1983