Vasopressin-stimulated prostaglandin E biosynthesis in the toad urinary bladder. Effect of water flow.
Open Access
- 1 December 1977
- journal article
- research article
- Published by American Society for Clinical Investigation in Journal of Clinical Investigation
- Vol. 60 (6) , 1339-1347
- https://doi.org/10.1172/jci108893
Abstract
Prostaglandin E biosynthesis and its effect on water permeability were investigated in the toad urinary bladder. Arginine vasopressin (1 mU/ml) increased prostaglandin E (PGE) biosynthesis from 0.5+/-0.1 to 5.0+/-0.4 pmol/min per hemibladder (mean +/-SEM, n= 8, P less than 0.001). Maximal vasopressin-stimulated PGE biosynthesis, 6.4+/-0.2 pmol/min per hemibladder, occurred at vasopressin concentrations in excess of 3 mU/ml. Half-maximal stimulation of PGE biosynthesis occurred at a vasopressin concentration of approximately 0.7 mU/ml, whereas half-maximal stimulation of water flow occurred at a vasopressin concentration of approximately 5 mU/ml. Vasopressin-stimulated PGE biosynthesis did not depend on water flow along an osmotic gradient or upon sodium transport. Thin-layer chromatographic analysis of the lipids released from hemibladders labeled with tritium-arachidonic acid revealed that vasopressin stimulates the release of arachidonic acid from intracellular lipid stores without affecting the percentage of free arachidonic acid converted to PGE. Neither cyclic AMP nor theophylline stimulated PGE biosynthesis although they mimic arginine vasopressin (AVP) in stimulating water permeability. Biosynthesis of PGE was inhibited by mepacrine, a phospholipase inhibitor, and by agents that inhibit arachidonic acid oxygenase. The inhibition of PGE biosynthesis resulted in augmented vasopressin- and theophylline-stimulated water flow, but had no effect on cyclic AMP-stimulated water flow. We interpret these results to mean that endogenous PGE inhibits basal and vasopressin-stimulated adenylate cyclase activity. In contrast to the effects of AVP on permeability and transport, AVP stimulates PGE biosynthesis by a mechanism that does not depend on an increase in cellular cyclic AMP levels. The water permeability response of the toad urinary bladder to vasopressin is inhibited by PGE synthesized by the bladder in response to vasopressin.This publication has 18 references indexed in Scilit:
- In vivo effect of indomethacin to potentiate the renal medullary cyclic AMP response to vasopressin.Journal of Clinical Investigation, 1977
- Effect of different prostaglandins on the permeability of the toad urinary bladderComparative Biochemistry and Physiology Part C: Comparative Pharmacology, 1975
- Evidence for an in vivo antagonism between vasopressin and prostaglandin in the mammalian kidney.Journal of Clinical Investigation, 1975
- Effect of prostaglandin E1 on sodium transport and osmotic water flow in the toad bladderAmerican Journal of Physiology-Legacy Content, 1971
- Effect of prostaglandin E1 on the permeability response of the isolated collecting tubule to vasopressin, adenosine 3′,5′-monophosphate, and theophyllineJournal of Clinical Investigation, 1968
- Effect of Prostaglandin (PGEI) on the Permeability Response of Toad Bladder to Vasopressin, Theophylline and Adenosine 3′,5′-monophosphateNature, 1965
- THE SIMILARITY OF EFFECTS OF VASOPRESSIN, ADENOSINE-3′,5′-PHOSPHATE (CYCLIC AMP) AND THEOPHYLLINE ON THE TOAD BLADDER*Journal of Clinical Investigation, 1962
- STRUCTURE OF THE TOAD'S URINARY BLADDER AS RELATED TO ITS PHYSIOLOGYThe Journal of cell biology, 1961
- Some Effects of Mammalian Neurohypophyseal Hormones on Metabolism and Active Transport of Sodium by the Isolated Toad BladderJournal of Biological Chemistry, 1960
- THE EFFECTS OF NEUROHYPOPHYSIAL EXTRACTS ON WATER TRANSFER ACROSS THE WALL OF THE ISOLATED URINARY BLADDER OF THE TOAD BUFO MARINUSJournal of Endocrinology, 1958