Abstract
When the three-parameter logistic model is applied to tests covering a broad range of difficulty, there frequently is an increase in mean item discrimination and a decrease in variance of item difficulties and traits as the tests become more difficult. To examine the hypothesis that this unexpected scale shrinkage effect occurs because the items increase in complexity as they increase in difficulty, an approximate relationship is derived between the unidimensional model used in data analysis and a multidimensional model hypothesized to be generating the item responses. Scale shrinkage is successfully predicted for several sets of simulated data.