Abstract
Elucidating earlier work, it is shown that the Kadomtsev-Petviashvili equation has n + 2 constants for all n >/= 0. It also has a pseudo-constant from which the constants can be obtained by differentiation with respect to time. The pseudo-constant can be obtained from a basis functional J(n) ((n+2)) = -1/18 [unk] y(n+2)q by taking repeated Poisson brackets with the Hamiltonian.

This publication has 1 reference indexed in Scilit: