Abstract
If the observations for fitting a polytomous logistic regression model satisfy certain normality assumptions, the maximum likelihood estimates of the regression coefficients are the discriminant function estimates. This article shows that these estimates, their unbiased counterparts, and associated test statistics for variable selection can be calculated using ordinary least squares regression techniques, thereby providing a convenient method for fitting logistic regression models in the normal case. Evidence is given indicating that the discriminant function estimates and test statistics merit wider use in nonnormal cases, especially in exploratory work on large data sets.